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Summary 

Probability is one of the fundamental tools that modellers use to describe and 
explain. It can represent both the properties of all kinds of events (social, 
psychological or natural) and agents’ degrees of belief. Probability raises formidable 
conceptual challenges, which are the object of the philosophy of probability. The 
definition of probability is based on an often implicit ontology, and its evaluation 
raises specific epistemological problems. The purpose of this article is to outline a 
conceptual framework within which the fundamental categories of philosophers of 
probability and probabilists can communicate. 
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Introduction 
There are a variety of formal models intended to represent agents’ beliefs 

about their environment. Limiting ourselves to models of epistemic logic, beliefs are 
expressed in two distinct contexts. In a syntactic context, they are defined on 
propositions4 by means of individual belief operators, which express the fact that an 
agent believes one or another proposition to be true. For example, Bip means that 
individual i believes the proposition p to be true. In a semantic context, beliefs are 
defined on possible worlds by means of individual accessibility relations, indicating 
the worlds that an agent considers to be possible from a given world. In both cases, 
agents’ beliefs are based on their shared environment, but also on the beliefs of 
others about these primary beliefs. Under relatively weak conditions, the two contexts 
are equivalent, thanks to the definition of principles of correspondence. 

Beliefs can be seen either as an all-or-nothing matter or as a matter of 
degree. In a set-theoretic approach, the belief is all or nothing, in the sense that an 
agent either believes or does not believe that a given proposition is true. In a 
probabilistic approach, the belief is graduated, in the sense that the agent expresses a 
degree of belief about a given proposition. Probabilistic beliefs can be related to set-
theoretic beliefs in syntax or in semantics. In syntax, one can consider that the belief 
operator applies to a proposition p if the individual’s degree of belief in p weakly 
exceeds a certain threshold, for instance equal to one (Locke’s thesis). In semantics, 
one can consider that the relation of accessibility represents the support of a 
probability distribution over possible worlds from a given world. Using this 
correspondence, the properties defined in a set-theoretic context are transferred (in a 
way that is not always immediate) to a probabilistic approach. 

In what follows, we limit ourselves to the study of a single agent forming 
probabilistic beliefs about his physical or social environment. This means that we do 
not consider crossed beliefs, that is, one agent’s beliefs about what another agent 
believes. Direct beliefs are naturally expressed in the semantics of possible worlds, 

                                                 
4 For simplicity’s sake, we do not make the customary philosophical distinction between statements and 
propositions. 
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each world representing one possible state of the environment. As the real world is 
fixed (by the modeller), an agent’s beliefs are simply represented by a probability 
distribution, or more generally, by a probability on events considered as sets of 
worlds. A probability is said to be “extreme” if it takes the value 0 or 1; otherwise it is 
“non-extreme”. 

This article starts by specifying the conceptual framework in which probability 
is defined. It then situates the different schools that have proposed particular 
interpretations of probability within this framework. Finally, it discusses the 
operations commonly defined on probabilities according to these different 
interpretations. The aim is thus to build a bridge between the technical and 
philosophical analysis of probability. For probabilists, it seeks to bring to light the 
numerous implicit presuppositions that influence their work. For philosophers, it 
seeks to highlight the formal conditions that are assumed to be satisfied prior to 
calculation. 

The first section introduces the general characteristics of probabilities, while 
the second section describes the characteristics of the random situation being 
analysed. The third section presents the main typologies of probabilities and the 
fourth section crosses them, providing examples of each category thus obtained. The 
fifth section describes the possible protocols for the empirical measurement of 
probabilities. The sixth section situates the four main schools that have conceptualized 
probability over the course of history. The seventh section looks at the combination of 
probabilities, and the eighth section examines their revision. The ninth section 
discusses the methodological problems raised by the comparison of categories of 
probability. The tenth section presents some generalizations of the concept of 
probability. The eleventh, twelfth and thirteenth sections examine the application of 
probability to statistics, the empirical sciences and epistemology. 
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1. Characteristics of a probability 
Every probability is first characterized by its attributor, in this case the 

individual who expresses the probability. Traditionally, the attributor has one of two 
different roles, depending on his motives. He may be the modeller himself, seeking to 
build a probabilistic model of the system being studied. For example, the modeller 
assigns a certain probability to the emission of particles by a radioactive source. Or he 
may be an ordinary agent seeking to represent the context in which he is operating, 
for the purposes of knowledge or action. For example, a bettor assigns a probability 
to the likelihood of a certain horse winning a race. Ultimately, however, even when 
the probability is expressed by an agent, it is the modeller who considers its 
evaluation by that agent. 

Every probability is also characterized by its object, in other words a system 
that produces a certain phenomenon. It is assumed that this phenomenon can be 
separated from its context and that it occurs in various different modes or instances. 
In practice, it can be realized in two contexts: static or dynamic, individual or 
collective. It is called a serial phenomenon if it can occur repeatedly in the same 
system. For example, the modeller assigns a given probability to the outcome of a 
well-defined throw of the dice. It is called a populational phenomenon if it occurs in 
distinct individuals of a same population. For example, the modeller will assign a 
given probability to the likelihood that an individual in a given population suffers 
from a particular disease. 

Lastly, every probability is characterized by the date at which it is applied to 
the phenomenon, in relation to the date at which the phenomenon occurred. Ex ante 
probabilities are defined before the occurrence of the phenomenon. Thus, a voter 
expresses a probability that a given candidate will be elected before the election has 
taken place. Ex post probabilities are defined after the occurrence of the 
phenomenon. Thus, a jury member pronounces a probability that the defendant is 
guilty after the crime has been committed. Furthermore, the date at which the 
phenomenon is evaluated may differ from the date at which this evaluation is 
pronounced. Today, a researcher may consider that the probability of discovering an 
HIV vaccine was a given value yesterday and will be another value tomorrow. These 
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two dates usually coincide, however, as the probability assigned is applied 
instantaneously. 

Returning to the object of the probability, it is always possible to consider 
successive occurrences of a serial phenomenon as a population, in which case one can 
treat it as a populational case. Conversely, one can consider that the individuals in a 
population are chosen sequentially (in a random order to be specified), thus defining 
successive occurrences of the phenomenon. It is worth noting, however, that a 
phenomenon can be both serial and populational at the same time. This is the case, 
for example, when the same horses compete in several successive races. If the 
attributor of the probability is the bettor, the object of the probability is the result of 
one of the races, and more precisely the position in which a given horse finishes the 
race. 

Whatever the phenomenon considered, the attributor can attribute a 
probability from one of two different perspectives, which depends on the way we 
consider the sequential or parallel experiments (or trials) in which the phenomenon 
occurs. The phenomenon is specific if the attributor is interested in a single instance of 
its occurrence (a token). For example, the modeller is interested in the next throw of 
the dice, or the doctor in the illness of the patient sitting in front of him. The 
phenomenon is generic if the attributor is interested in a set of occurrences (a type). 
For example, the modeller is interested in an undefined throw of the dice, or the 
doctor in the illness of any patient. 

Furthermore, the phenomenon can be defined in relation to a more or less 
finely differentiated system, but the modes of the phenomenon are assumed to be the 
same in each set that is identified. The phenomenon is univocal if the system involved 
is considered to be identical in all the instances of its occurrence. Successive throws of 
well-defined dice or the illness of patients belonging to a homogeneous group can be 
considered as such. The phenomenon is multivocal if there is a precise typology of the 
systems involved that produce the same phenomenon, with a probability being 
defined for each of the categories considered. This is the case for the probability 
relating to dice of different shapes and colours, or populations of patients of different 
ages and genders. 
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2. Analytical framework 
As presented above, the modeller’s description of the object of the probability 

involves three types of criteria. Phenomenal criteria make it possible to differentiate 
the possible modes of the phenomenon under examination. They have to be identical 
in each achievable experiment. Factual criteria make it possible to characterize the 
conditions of each specific experiment of the phenomenon (if it is generic). They can 
vary from one experiment to another. Structural criteria make it possible to define 
and classify the systems at the root of the phenomenon (if it is multivocal). They are 
invariant across different experiments. 

In practice, the modeller is guided by the causal relations that she knows to 
exist between these criteria. She makes the hypothesis that the factors explaining the 
modes of the phenomenon comprise both the factual and the structural criteria. 
Conversely, the phenomenal criteria express the effects generated by these factors. 
The probabilities announced depend solely on the structural criteria, however, which 
exert a deterministic influence. They are not affected by the factual criteria, the 
influence of which – whether or not it is deterministic – is incorporated in the 
evaluation of the probability. Thus, the modeller is not seeking to build a model to 
describe completely the influence between criteria, but only to measure the 
dependence of the probabilities (and therefore of the phenomenal criteria) on the 
structural criteria. 

In the case of a horse race, the phenomenal criterion is simply the position in 
which a given horse finishes the race. The factual criteria include the weather, the 
heaviness of the track or the jockey’s skill, but also the nature of the saddle or the 
time of the race. The structural criteria include the age and sex of the horse, its racing 
stable and bloodline and the identity of its owner. The attributor will then, for 
example, define the probability of a given horse winning a race as a function of its 
age and sex. If he possesses additional information about the racing stable, he will 
refine the category to which the horse belongs and adjust its probability accordingly. 
The state of the track, on the other hand, varies from one race to another and is one 
of the causes that is incorporated in the probability. 
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In this way, every probability is defined within a reference frame, which 
precisely sets the characteristics of the system and the modes of the phenomenon. 
Conventions of equivalence establish that it is indeed the same phenomenon that is 
reproduced in parallel or sequential instances (fixed structural characteristics, 
variable factual characteristics). The first condition is that the situations compared 
should be similar. This condition must be satisfied in every set generated by the 
differentiation of the system. The second condition requires that the experiments 
considered be independent of each other. In a temporal context, this means that the 
experiments should not be repeated at intervals that are either too close together (to 
avoid correlation) or too far apart (to avoid excessive change). In a spatial context, it 
means that the individuals in the population should interact in a stable manner with 
regard to the phenomenon in question. 

In the case of the dice, they should not be modified in any way over the course 
of successive throws, and every throw should be governed by the same protocol. The 
dice are also assumed to be exempt from wear and tear and to have no memory of 
past occurrences. In the case of the disease, the patients are considered to be 
interchangeable and subject to the same environmental conditions. They must also 
exert reciprocal influences that are fixed over the short term (contagion). In the case 
of a horse race, it is assumed that the horses do not age and that the racing 
conditions (weather, state of the track) do not vary or are insignificant. In particular, 
the horses’ past results should not influence the results of future races, but this 
condition is often unfulfilled (handicaps). 

The reference frame is, of course, a deliberate construct of the modeller. Thus, 
although the attribution of a probability is an epistemic operation, its definition is 
based on ontological presuppositions. The categories that characterize the 
phenomenon, like the similarities between phenomena, are defined by the modeller. 
When the attributor of the probability is an ordinary agent, it is also assumed that he 
adopts the same typologies as the modeller. Furthermore, the reference frame pre-
exists the evaluation of the probability and cannot be directly affected by the results 
of the trials. Thus, if the modeller has pre-defined the structural criteria that 
differentiate the systems, these criteria cannot be brought into question by 
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observation of the results of experiments (the problem of resilience). If a coin is 
judged a priori to be unbiased (see §5), then an observed imbalance between 
“heads” and “tails” cannot lead to the conclusion that the coin is biased. 

 

3. Typologies of probabilities 
3.1 Basic typology 

In the above explanatory framework, we can pursue our analysis of the 
factual criteria (hereafter referred to as factors) from the attributor’s point of view. A 
factor is explicit if the attributor knows that it exerts some influence over the 
phenomenon. It is implicit if the attributor is unaware of the effect it may have on the 
phenomenon, in one way or another. In some cases, the attributor cannot identify any 
explicit factor making it possible to distinguish between two experiments, and the 
phenomenon is said to be primitive. A typical example is a radioactive source 
randomly emitting various types of radiation. Such a phenomenon cannot be related 
to any identified prior causes and must be studied independently. In all other cases, 
at least one explicit factor is identified and the phenomenon is said to be emergent. 
Through iteration, such a phenomenon can be related to prior factors, which may 
themselves be generated by even earlier factors. 

Furthermore, an explicit factor is known if the attributor can observe the value 
it takes in each instance of the phenomenon. An explicit factor is unknown if the 
attributor cannot observe it with precision, for either physical or ethical reasons. 
Knowledge of a phenomenon varies, however, depending on whether the 
phenomenon is considered to be specific or generic. In a specific throw of the dice, the 
initial impetus is deterministic, but is in practice impossible to measure. In a generic 
throw, the impetus varies, and to an outside observer, the phenomenon appears to be 
completely random. Generic dice throwing corresponds to a random phenomenon 
deliberately constructed by the attributor. In a way, it transforms explicit factors into 
implicit ones. 

Finally, an implicit factor is regular if the attributor can consider that its 
influence is governed by a random law, whatever that law might be. An implicit factor 
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is irregular if the attributor considers its influence to be erratic, in other words it 
cannot be represented by a probability law. This classification, however, depends on 
the sophistication of the analysis of the phenomenon. It is very difficult to distinguish 
between a stochastic phenomenon and a phenomenon produced on some other basis, 
especially if it is produced artificially without using random draws. A scientific or 
technological innovation to which one assigns a probability despite its erratic nature 
is a typical example of an irregular phenomenon. 

By crossing these last two criteria, we can produce a first typology of 
probabilities, in four large categories (in this table, by convention, an absent factor is 
considered to be regular and known). 
 

Implicit factors 
Explicit factors 

All regular Some irregular 

All known 
irreducible probability: 
radioactive source 

approximate probability: 
technological innovation 

Some unknown 
controlled probability: 
dice throwing 

radical probability: 
horse racing 

 
An irreducible probability relates to a phenomenon considered to be primitive 

(or with factors that are all regular and known). The probability then expresses an 
intrinsic property of the phenomenon, independent of all prior factors. Thus, the 
radioactive source emits particles according to classic random laws, which are not 
derived from probabilities related to deeper factors. The probability is irreducible, 
because the phenomenon is assumed to be intrinsically random; it cannot be reduced 
to a kind of determinism with hidden variables. Quantum mechanics is often 
considered to be the only expression of a non-deterministic phenomenon (at least in 
the natural world). At a more macroscopic level, the random character disappears due 
to the aggregation of microscopic laws. 

A controlled probability relates to a phenomenon that is explained by factors 
that are all explicit, but some of which are unknown. The probability then sums up 
the attributor’s ignorance of the value actually taken by these factors. Dice throwing, 
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realized by human hand or machine, and stated in its specific form, is the simplest 
illustration of this. The probability is controlled if we hold that the basic process is 
perfectly deterministic and the attributor cannot observe the initial conditions of the 
throw, which prevents her from predicting the result (from among several possible 
values) by means of the laws of mechanics (see §4.1). In this case, we are dealing 
with a “random event in the sense of Cournot”, due to the crossing of two 
independent causal chains. In the throw of the dice, the moving dice meet the surface 
on which they roll in a complex way. 

An approximate probability relates to a phenomenon of which the explicit 
factors are known and the possible implicit factors prove to be irregular. The 
probability then reflects the best estimate that one can make of the phenomenon’s 
occurrence. Technological innovation appears to match this description if we set aside 
the socio-economic conditions of its occurrence. The probability is approximate if we 
hold that it sums up the irregular implicit factors by assigning a certain probability to 
them. Here again, in the social sciences, innovations are often considered to be the 
only phenomena of a random nature, apart from possible elements of free will 
associated with behaviour. 

A radical probability relates to a phenomenon that is explained by a 
combination of irregular implicit factors and unknown explicit factors. The probability 
then expresses the joint influence of these two types of factors (which can be 
confused). This is the case for horse races or any competition between several entities 
(elections). The factors involved are numerous and their influences tangled. The 
probability is radical in the sense that it simply introduces a certain regularity where 
there was no evident regularity a priori. 

These distinctions are made by the modeller on the basis of his current 
knowledge, and they can vary over time. So, for example, the modeller may discover 
explicit factors that transform an irreducible probability into a controlled probability. 
Radioactivity may be explained by deeper factors behaving as “hidden variables”. 
Conversely, implicit factors may be discovered that transform a radical probability 
into a controlled probability. Thus, for an election in a limited setting, all the relevant 
factors can be identified if not known. Lastly, unknown factors may become more 
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easily observable, transforming a random phenomenon into a deterministic one. This 
would be the case if the impetus of the throw of the dice could be understood, making 
it possible to predict its result perfectly. 

 
3.2 Ontological and epistemic probabilities 

According to traditional philosophy, a second typology of probabilities is 
based on the distinction between a property attributed to the phenomenon itself and 
a property located in the mind of the modeller: 

• an ontological probability (chance) reflects the degree of occurrence of a 
phenomenon, independently of the mental states of its attributor; it takes 
the value α for an event E if this event has an intrinsic probability 
Ch(E) = α of occurring;  

• an epistemic probability (credence) reflects the degree of belief that the 
attributor has in the occurrence of the phenomenon, taking into account 
her uncertainty; it takes the value α for an event E if the attributor i 
believes its occurrence to the degree Cri (E) = α. 

 
The ontological probability of an event is the object of the attributor’s 

judgement, just as any physical property of an entity can be taken as an object by the 
attributor. In the same way that she may evaluate well or badly the weight or length 
of an object, so she can evaluate well or badly the probability assigned to an event, 
measured according to what is assumed to be a cardinal scale (see §10). By contrast, 
the epistemic probability assigned to an event is a mode of the judgement that the 
attributor makes on that event. The spectrum of values of probabilities can then be 
more or less fine-grained, refining the basic three-way division (believing the event 
will occur, that it will not occur, and neither believing that it will or will not occur). 

Of course, the ontological (postulated) probability Ch(E) that is the object of 
the attributor’s judgement remains to be discovered. The attributor can announce her 
estimate of this probability, which is denoted Ch*(E). The latter has an epistemic 
nature and can be interpreted as a sure belief of the attributor about Ch(E). A 
pluralist (see §3.4) could even use a hierarchy of probabilities (see §10) and analyse 
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the estimate Ch*(E) as an epistemic probability defined on an ontological 
probability: Cri (Ch(E) = α) = 1. This situation is analogous to that concerning 
the speed of light, which is not actually known, but the estimated value is 
nevertheless almost universally accepted. 

 
3.3 Objective and subjective probabilities 

In the same vein, an alternative typology of probabilities is based on the fact 
that the phenomenon may or may not be perceived in the same way by all the 
attributors: 

• an objective probability characterizes a situation in which every attributor 
has sufficient information about the phenomenon and is capable of 
perfect reasoning on that information; such a probability is universal in 
that it is the same for all the attributors; for an event E, it is denoted 
Po(E); 

• a subjective probability characterizes a situation in which an attributor’s 
information is incomplete and/or her rationality limited; such a 
probability is personal in the sense that it differs from one attributor to 
another; for an event E and an attributor i, it is denoted Psi(E). 

 
Unlike the previous distinction, this one is more a matter of degree than of 

binary opposition, since a probability can be viewed as more or less objective. The 
distinction remains relatively blurred, because it depends on an idea of perfect 
information and perfect rationality (epistemic objectivity). In theory, information is 
perfect when all the relevant factors have been made explicit and observed – which 
remains wishful thinking. In practice, information is held to be perfect from the 
moment that additional information no longer modifies the chosen probability, which 
introduces a sort of self-reference. As for perfect rationality, it depends on respect of 
probability axioms (see §7). 

In the case of epistemic probabilities, the question of whether the link 
between information and probabilities is univocal is highlighted by the two following 
extreme attitudes: 
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• for the radical objectivist, each body of information univocally determines 
the degrees of belief adopted by a rational attributor; a corollary affirms 
that the probability can only be modified if the attributor receives 
additional information;5 

• for the radical subjectivist, for any given body of information, all degrees 
of belief are possible for each attributor, provided they obey the 
probability axioms. 

 

4. Comparison of typologies 
4.1 Crossing the typologies 

If we cross the first two typologies, we can consider that the irreducible and 
approximate probabilities (the first line in the first table) are of an ontological 
nature. They correspond to factors that are all known, and they only differ in their 
modes of influence. In contrast, controlled and radical probabilities (the second line in 
the table) are epistemic. They involve factors that are poorly known by the attributor. 
This amounts to saying that the only element of uncertainty for the attributor is that 
he cannot know some of the explicit factors. This is obvious in the cases of both dice 
throwing and horse racing. Another element of uncertainty, however, concerns the list 
of factors that influence the phenomenon, whatever the possibility of measuring 
them. 

If we cross the first and third typologies, we can consider that irreducible and 
controlled probabilities (the first column in the table) are objective. On the other 
hand, approximate and radical probabilities (the second column in the table) are 
subjective. This amounts to saying that the main reason for objectivity is the fact of 
not having implicit criteria or considering them to be perfectly regular. The 
probability of a radioactive source is objective, because the decay law is perfectly 
known. The probability of a throw of the dice is objective, because it is the result of a 

                                                 
5 For a recent discussion of the idea that a body of information univocally determines probabilities, see Levi 
(2010). 
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calculation based on objective data. As the laws governing the movement and landing 
of the dice are given by mechanics, it is possible to define, for each initial condition, 
the result of the throw. In the space of initial conditions (direction and speed of the 
throw), this gives rise to basins of attraction for each of the possible outcomes. 
Moreover, if we observe that these basins are distributed homogeneously over the 
space (because they are governed by the principle of indiscernibility), we can deduce 
that the probabilities of the different outcomes are uniform.6 

Finally, if we cross the last two typologies, we obtain our initial table, but with 
different headings. 

 
 
 Objective probability Subjective probability 

Ontological probability 
irreducible probability 
radioactivity 

approximate probability 
technical innovation  

Epistemic probability 
controlled probability 
dice throwing 

radical probability 
horse racing 

 
At first glance, the four families of probabilities obtained by crossing the two 

typologies appear to be cogent. It could also be argued, however, that the last two 
typologies introduced are highly congruent. First, an ontological probability appears 
to be more objective insofar as the attributor really can access the necessary 
information. Second, an epistemic probability appears to be more subjective insofar 
as a degree of belief is, a priori, only based on incomplete information. 

                                                 
6 The idea that objective probabilities can emerge from the properties of a deterministic physical system, 
and in particular from the way that the initial conditions are associated with the types of final conditions, 
can be compared with the “method of arbitrary functions” that is often ascribed to Poincaré (1896/1912). 
It has given rise to a series of results of which von Plato (1983) gives an overview. These results show that 
for certain physical systems, a very large set of distributions over initial conditions lead (approximately) to 
the same distribution over final conditions. These results have played an important role in recent 
discussions about the possibility of objective probabilities within deterministic systems (see Strevens, 
2011). 
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Nevertheless, the mixed categories do have an intuitive validity. First, it is 
possible to make a judgement of ontological and subjective probability if a random 
property is attributed to a phenomenon without a consensus on its evaluation. So, for 
example, although radioactivity is an objective physical phenomenon, its 
measurement may be the subject of debate between scientists. Second, it is possible to 
make a judgement of epistemic and objective probability if the degree of belief 
expressed is based on sufficient information to oblige every attributor to endorse it. 
So, for example, all the bettors might agree on the same estimation for the result of a 
race. The perimeter of these two situations of attribution depends on the norms that 
the attributor adopts for the formation of degrees of belief. 

The main problem is to know whether the two mixed forms of probability 
(approximate, controlled) can be reduced to the two pure forms (irreducible, radical). 
First, a controlled probability can be reduced to an irreducible probability through the 
artifice of moving from a specific situation to a generic one. The conditions governing 
the throw of the dice are obscured and the attributor only considers the results of 
successive throws, which are no longer different from the rays emitted by a 
radioactive source. Second, an approximate probability can be reduced either to an 
irreducible probability – if a regularity is discovered behind the erratic appearance – 
or to a radical probability if some hitherto unknown criteria are revealed. 

Consequently, it is common philosophical practice to confuse the two pairs of 
concepts, although the first pair (epistemic vs. ontological) is better defined 
conceptually (Carnap, 1950/1962; Gillies, 2000). Probabilists generally do not 
distinguish between the two pairs of concepts either, mainly using the second 
vocabulary (objective vs. subjective), which appears to be more operational. In what 
follows, we will introduce whichever of the two distinctions most enlightens the 
particular problem studied. 
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4.2 Attitudes towards multiple interpretations 
The different interpretations of probabilities are reflected in distinct schools of 

thought (see §6). Attitudes towards this plurality of interpretations are themselves 
eminently variable. The monists believe that only one of these interpretations is 
legitimate, whereas the pluralists accept a plurality of interpretations without further 
ado. The non-contextualists believe that each recommended interpretation should be 
independent of the situation analysed, while the contextualists consider that the 
situation can modify the interpretation. 

By crossing these two typologies, we obtain four possible positions, where the 
example (a, ab) corresponds to two interpretations a and (a and b) successively 
applied in a first and second situation. 

 
 
 

Non-contextualist Contextualist 

Monistic 
one sole interpretation valid in 
every situation: (a,a) 

one sole interpretation that varies 
according to the situation: (a,b) 

Pluralistic 
several interpretations, each 
valid in every situation: (ab,ab) 

diverse interpretations in every 
situation: (a,ab) 

 
This difference in attitude is particularly relevant for the distinction between 

ontological and epistemic probabilities. Monists consider that only one of these 
conceptions is legitimate or necessary in all relevant situations of probability 
attribution. Ontological monists uphold that Cri(E) can be reduced to Ch*(E), as 
each degree of belief is in fact only a belief in a chance of occurrence. Epistemic 
monists argue that Ch*(E) can be reduced to Cri(E), that is, that a belief in 
chance is no more than an ontological projection of a personal degree of belief. 
Conversely, pluralists accept several conceptions at the same time, as Ch*(E) and 
Cri(E) simultaneously make sense, although their meanings are different. They 
may then consider that in some contexts of probability attribution, only one of the 
conceptions is necessary, whereas both conceptions are required in other contexts. 
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5. Measuring probabilities 
We can define four modes of measuring probabilities, based successively on 

their past occurrences, their immediate characteristics and their future consequences. 
More precisely, there are four natural modes of measurement by the modeller, each 
of which corresponds to one of the categories of probability defined above. 
 

 
 

Objective probability Subjective probability 

Ontological 
probability 

irreducible probability: 
frequency 

approximate 
probability: 
declaration submitted to 
subjective constraints 

Epistemic 
probability 

controlled probability: 
estimate subject to objective 
constraints 

radical probability: 
revelation 

 
Irreducible probabilities are typically inferred from a frequency in a sequence 

S of experiments. Of course, this evaluation only applies if the phenomenon is 
repeated in analogous conditions. The frequency of a given modality of the 
phenomenon is simply the number of experiments that resulted in this modality 
divided by the total number of experiments. The actual frequency is relative to a finite 
sequence S that only allows one to approximate the probability. The hypothetical 
frequency (Reichenbach, 1949/1971; von Mises, 1928/1957) is relative to an infinite 
virtual sequence, which converges towards the probability (if it exists) by virtue of the 
law of large numbers.7 Thus, one can estimate the probabilities of decay of 
radioactive particles by observing the corresponding frequencies. 

                                                 
7 The law of large numbers can be written: Pr (│Ch (E) – Frn (E)│≤ ε ) → 1 if n→∞, 
involving three probabilities: Ch(E) is the assumed true ontological probability of the phenomenon, 
Frn(E) the frequency of the phenomenon after n trials, and Pr the calculated probability of a 
hypothesis for the modeller. 
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Controlled probabilities are estimated on the basis of objective constraints 
that bound and may even determine the values of probabilities. These constraints 
relate to factual characteristics, explicit and unknown, which determine the 
phenomenon in question. They are generated by the structural characteristics of the 
system under study. This is true for the conditions of symmetry or invariance that are 
imposed on some phenomena through the laws that govern them. Thus, the throw of 
a die of regular form with any impetus leads to the prediction of equiprobability in 
the occurrence of the die landing on one of its faces. 

Approximate probabilities are measured by simple verbal declaration of the 
agents, bounded by subjective constraints. They result from pure and simple 
questioning of the agent, provided she is willing to answer. They are often considered 
unreliable, however, compared with the deeper probabilities the agent is supposed to 
possess. They may be deliberately biased for strategic reasons involving the supply of 
information to others. They are also unintentionally biased by the agent’s distorted 
awareness of her own beliefs. Thus, each individual can declare the probability that 
she assigns to a technological innovation according to her subjective knowledge of the 
processes of innovation. 

Radical probabilities are obtained by revelation on the basis of the choices 
made (under uncertainty) by the agents that carry them. They result from a process of 
abduction held by the modeller, who uses the actions observed to reveal the 
underlying probabilities. For example, he can hypothesize that an individual believes 
to the degree α that a certain horse is going to win, if α is the maximum sum the 
individual is willing to place on a bet that pays her one euro if the proposition is true 
and nothing otherwise. The agent is not necessarily aware of the probabilities 
revealed in this way. These probabilities are often multivocal, inasmuch as they result 
from non-deductive reasoning. They are based on a postulated model of decision-
making, usually the maximization of expected utility, and they require knowledge of 
the agent’s preferences concerning the consequences of her choices. Indeed, these 
preferences, in conjunction with the agent’s beliefs, determine her choices. So, for 
example, the bets that an agent places on a horse race reveal her underlying beliefs. 
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A same method of measurement can perfectly well apply to different 
categories of probabilities. In practice, the methods differ essentially according to 
whether the probabilities are objective or subjective. For the former, frequencies 
apply from the moment that the phenomenon is truly repetitive (over time or within 
a population). They can be applied equally well to radioactivity as to dice throwing. 
Estimates based on objective constraints apply to any phenomenon for which one has 
sufficient indications about its causes, which is more restrictive. They are valid for dice 
throwing but not radioactivity. For subjective probabilities, bets on the possible 
outcomes of the phenomenon can be used, provided agents are prepared to submit to 
this process. They concern elections as well as innovations. Declarations are often 
more difficult to obtain, at least in a quantitative form. They are valid as long as the 
modeller has a sufficiently well-structured model of the phenomenon. They apply to 
innovations, but can also apply to elections. 

Conversely, probabilities measured by different methods involving different 
agents can be assigned to one and the same phenomenon. Thus, the probability that 
a list of symptoms is associated with one or another disease can be evaluated by all 
four methods. The frequency with which the symptoms lead to the disease can be 
measured over a sample of patients. Estimates based on constraints can also produce 
orders of magnitude of the ratios of probabilities according to the closeness of the 
underlying models. Moreover, a doctor could make an estimate of this probability on 
the basis of his past qualitative experience. Lastly, the probability can be inferred 
from a bet that the doctor makes about the state of the patient through the action 
that he decides to take. Of course, these measurements may diverge from each other, 
insofar as they are governed by different logics and use different information.  
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6. Classical interpretations 
In the continuation of the general typologies presented in §3, let us turn to 

more specific interpretations of probabilities8, which have been proposed over the 
course of time. These interpretations are intended to provide a conceptual and 
sometimes methodological analysis of a concept of probability used in scientific 
practice or everyday life. They seek to answer specific questions that arise in the use 
of probabilities. 

The frequentist approach, pioneered by Jacques Bernoulli (1713) and 
developed by Fisher (1925) and von Mises (1928/1957), is based on the (asymptotic) 
identification of probabilities with the frequencies of occurrence of generic events in 
successive experiments (or with proportions, in the case of parallel experiments). It 
therefore rejects the attribution of probabilities to specific events: according to von 
Mises, “this is one of the most important consequences of our definition of 
probability”.9 Frequentism is essentially justified by the law of large numbers, which 
affirms that the frequency of an event converges towards its probability. Convergence 
of this random variable happens either in probability (weak law) or almost surely 
(strong law). The frequentist interpretation is intended to provide an ontological 
concept of probability: probabilities are supposed to express empirical properties of 
the agent or modeller’s environment, which they can then discover. 

The propensity approach, introduced by Popper (1959), also relates to the 
ontological concept of probability. Propensity describes the causal power exerted by 
certain material conditions in the production of the phenomenon studied. It was 
developed to explain the probability of specific events, but actually exists in two 
versions. According to the first (long run, Popper, Gillies), the propensity of a set of 
repeatable conditions is their tendency to produce frequencies when they are 
instantiated repeatedly. According to the second (single case, Popper, Miller, Fetzer), 
propensity expresses the power exerted by a complete set of relevant conditions to 
produce a specific event. Ontologically, the propensity interpretation is less 

                                                 
8 See Hajek (2010) for a general discussion. 
9 Quoted by Gillies (2000), p.115. 
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parsimonious than frequentism, because it postulates that the system has capacities to 
act (causally) on the phenomenon in question. Methodologically, it is less operational 
in that it does not provide a specific protocol for measuring probabilities. 

The logical approach was introduced by Keynes (1921) and Carnap 
(1950/1962).10 “Logical” (or “inductive”) probabilities are sometimes considered 
qualitative (see §9), but they can also be quantitative. Above all, they apply more to 
propositions than to material phenomena. More precisely, if p and q are two 
statements, the logical probability Ind(p,q) is a conditional probability expressing 
the degree to which p entails q (maximal if p entails q and minimal if p entails non-
q). In this way, they make it possible to extend the relations of logical consequence to 
probabilized relations. The status of these probabilities is supposed to be the same as 
the one for logical notions: they are neither psychological properties of agents nor 
empirical properties of our universe. Nevertheless, they are close to the epistemic 
interpretation of probabilities, under the following hypothesis: if all the information 
possessed by an agent can be expressed in the proposition e, then the degree to 
which he should believe a hypothesis h is given by Ind(e,h). Logical probabilities, 
however, are also presented as being objective, and even as the best illustration of 
radical objectivism (see §3.3). This approach, however, is not directly operational, 
because it does not propose any precise protocol for measuring probabilities. 

The subjectivist approach was developed by Ramsey (1931), de Finetti (1937) 
and Savage (1954/1972). It proposes an epistemic and subjective interpretation in 
terms of degrees of belief, but which is intended to be operational. It is based on the 
idea that beliefs are not directly observable, but are revealed in the virtual or real 
actions that are based on them, particularly bets. It can then be applied to a specific 
experiment, provided the agent is willing to express a choice relating to the 
phenomenon concerned. Beliefs can therefore be measured thanks to their “causal” 
properties in the agent’s action. This approach is sometimes backed up by theories of 
convergence, which show that the subjectivist probability converges towards an 
asymptotic value (independent of the prior probability) if it is revised using Bayes’ 
rule (see §7) with sufficiently rich information. 

                                                 
10 For a recent defence, see Maher (2006). For a succinct presentation, see Hajek (2010, §3.2). 
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Lastly and more recently, an objective Bayesian approach (Jaynes, 2003; 
Williamson, 2009) has been proposed. It is Bayesian in that it seeks to provide an 
epistemic interpretation of probabilities. It is objective in that it argues, in 
contradiction to the radical subjectivists (de Finetti), that the constraints weighing on 
the beliefs of a rational agent are much stronger than the simple respect of 
probability axioms. Two additional constraints are added: alignment with partial 
empirical frequencies (calibration) and the respect of theoretical constraints (usually 
the maximization of entropy). 

There is no univocal correspondence between the four classical interpretations 
and the categories outlined in §4. There are, however, some evident relations that 
must be pointed out. The frequentist and propensity approaches are clearly 
ontological, the former also claiming to be objective. The subjectivist approach 
applies above all to situations of radical, epistemic and subjective probability. The 
logical approach is more ambiguous, because it has both an epistemic dimension (in 
the evaluation of probabilities) and an objective dimension (in the calculative use of 
probabilities). Furthermore, some authors are non-contextual monists (Keynes, 1921; 
von Mises, 1928/1957; Popper, 1959; de Finetti, 1974) while others are pluralists 
(Ramsey, 1931; Carnap, 1950/1962; Mellor, 1971; Lewis, 1980/1986; Gillies, 2000). 

 

7. Combining probabilities 

For a long time, the most influential definition of probability, attributed to 
Laplace (1812), was the following: the probability of an event is the ratio of the 
number of cases where the event occurs to the total number of possible cases. The 
modern mathematical definition of probability, which takes into account the 
possibility of an infinite number of cases, can be traced back to Kolmogorov’s 
(1933/1950) axiomatization of probability. Probability is considered as a numerical 
function whose domain is an algebra A over a non-empty set W of worlds. The 
function P from A to R is a probability function if and only if the three following 
axioms are satisfied: 
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(P1) non-negativity: P(E) ≥ 0, for all E ∈ A 

(P2) normalization: P(W) = 1 

(P3) finite additivity: if E ∩ E’ = ∅, P(E ∪ E’) = P(E) + 
P(E’), for all E,E’ ∈ A  

 
Both the set W and the set A result from conventions made by the 

attributor. The first is never exhaustive in terms of the characteristics of the 
phenomenon to be taken into account. The second does not consider all the events 
that differ from each other materially, but only a subset. The conditions P1 and P2 
are essentially technical. Only the condition of finite additivity P3 is a real constraint 
imposed on probabilities. It can be extended to a condition of countable additivity 
P’3 by considering a countable number of elements of A. It has the following 
property as a consequence: 

 
(P’3) monotonicity: if E ⊆ E’, then P(E) ≤ P(E’) 

 
Ontological probabilities satisfy Kolmogorov’s axioms (at least with countable 

additivity). First, we can verify that frequencies in finite sequences of experiments 
satisfy these axioms. This result also holds in the framework proposed by von Mises.11 
It is less evident for other ontological interpretations. Following Lewis (1980/1986), 
some authors use a strategy of circumvention. They postulate that epistemic 
probabilities align themselves (under certain circumstances) with ontological 
probabilities (see §9) and they deduce that the former obey Kolmogorov’s axioms to 
the extent that the latter do. 

Epistemic probabilities also satisfy Kolmogorov’s axioms (including countable 
additivity). Thus, Savage (1954/1972) subjects an agent’s preferences over acts to a 
list of axioms, some of which are specific to probabilities (in practice, ordinal 

                                                 
11 See Howson and Urbach (1993), pp. 208–209. 

© Cournot Centre, September 2012



23 

 

probabilities, see §9). Consequently, the agent’s degrees of belief obey the basic 
axioms of probability theory, as long as we accept certain hypotheses about the way 
these degrees of belief are expressed in the agent’s choices. This result generalizes 
the Dutch Book argument (de Finetti, 1937), which applies to the bets made by an 
agent if his utility is known to the modeller. It affirms that if the agent does not 
respect the usual probability axioms, the modeller can build sequences of lotteries 
that lead to the sure ruin of the agent. 

Logical probabilities raise a particular problem in that they are often applied 
to propositions, and notably hypotheses. These hypotheses no longer correspond 
necessarily to observable phenomena, but to underlying structures. In particular, they 
express relations between phenomena and more precisely between the phenomenal 
and structural criteria of a phenomenon. They may be deterministic or random. The 
probability of a hypothesis is usually interpreted epistemically and expresses a degree 
of belief. The hypothesis is assumed to be true or false, but the attributor is uncertain 
about its truth value. Nevertheless, the probability of a hypothesis can also be 
interpreted ontologically by considering that it is written into nature. Nature is then 
assumed to be random, not only in its direct manifestations, but also in its deeper 
structures. 

In many respects, however, these hypotheses obey the general framework 
described previously. Thus, a hypothesis allows for distinct modalities even if one at 
most is assumed to be true.12 It is therefore possible to build events that are sets of 
hypotheses and that are themselves probabilized. It gives rise to successive 
experiments, which constitute so many empirical tests of the hypothesis. It is not the 
modalities of the hypothesis that are observed, however, but the data relating them 
to the phenomena studied. In practice, the hypothesis (obtained by abduction or 
made a priori ) is tested in its modalities with regard to these data. Its probability 
results from a backward inference from effects to cause, seeking to assign a 
probability to the causes when the consequences are known (see §8). For example, 

                                                 
12 For a well-formed hypothesis, there are at least two corresponding modalities: one where it is false and 
one where it is true. When the hypothesis sets the value θ of a parameter in a space Θ, then we can 
consider by extension that Θ is the set of modalities of the hypothesis. 
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one might hypothesize that a coin is unbiased and then carry out a series of tosses to 
test the validity of the hypothesis. 

 

8. Probability change 
Probability change consists in transforming a prior probability P- into a 

posterior probability P+ following the reception of a message M∈ A. Most 
change rules consider the algebra A as invariant over the set of all possible worlds. 
This means excluding new possibilities. The most widely used change rule is the 
Bayesian rule of conditionalization (which only applies if the prior probability of the 
message is non-zero): 

 
P+(E) = P( E / M)= P-( E ∩ M )/ P-( M ) if P-( M ) > 0 
 
In this rule, the weight of the worlds that are excluded by the message are 

allocated homothetically to the worlds that are still possible. Other rules have also 
been proposed. In Lewis’ (1976) “imaging” rule, the weight of a world that is 
excluded by the message is allocated to the closest world that remains possible 
(within an appropriate distance). 

In the literature, three contexts of change are traditionally considered 
according to the content of the messages received. The last ones involve both 
phenomenal and structural criteria and are presented in the form of events: 

• in the context of revising, the message excludes certain modalities of the 
phenomenon. It may or may not contradict the initial belief; 

• in the context of updating, the message indicates that certain modalities of 
the phenomenon have changed in a given direction. It does not contradict 
the initial belief inasmuch as the system concerned has changed; 

• in the context of focusing, the message restricts the reference class of the 
phenomenon (to a sub-population of the whole population, for example). 
It thus changes the attributor’s point of view without really supplying any 
new information. 
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In the medical example, patients suffer from variants A, B and C of a given 
disease in proportions that are influenced by some of the patients’ characteristics (sex, 
age). A revising message indicates that, given the prevailing local conditions, the 
population considered is not affected by the variant A (or that women are never 
affected). An updating message indicates that, given the appearance of a new drug, 
all the patients suffering from variant A (or all the women) have recovered. A 
focusing message indicates that the variants of the disease (and in particular its 
absence) are now only considered for the patients suffering from variants B and C 
(or only for women). 

Bayes’ rule can be justified in various contexts and for various types of 
probabilities. In practice, if it is justified for an ontological probability, then it is also 
justified for an epistemic probability by virtue of the alignment principle (see §9). The 
reverse, however, is evidently not true. There are two types of justifications, examined 
in turn: 

• cognitive justifications are only based on probabilities considered as the 
attributor’s beliefs, apart from any use that may be made of those beliefs; 

• pragmatic justifications are based on the attributor’s decisions, themselves 
assumed to be based on her beliefs. 

 
In the focusing context, Bayes’ rule applies naturally to every form of 

probability. This is because the initial distribution of probabilities is homothetically 
transformed into a new distribution over a more limited class of worlds. Within each 
subclass, the ratios of probabilities express the proportions of possible worlds of each 
type and they are therefore conserved. For example, the new distribution of 
probabilities (assumed to be ontological) of the variants of the disease now only 
apply to women, when applying Bayes’ rule. 

In the revising context, applying Bayes’ rule to ontological probabilities is 
more complicated. It is not the true probability that changes, but only its estimated 
value. Moreover, the message gives an indication about the distribution of 
probabilities, but it could have given other indications that would be equally relevant 
but lead to different final distributions. For example, if variant A is the only one 
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present in a population (and this is known to the modeller), the message may 
indicate equally well that variant C is absent or that variant B is absent. For 
epistemic probabilities, on the other hand, there is a direct cognitive justification for 
Bayes’ rule in terms of general axioms for belief change, transposed to probabilities 
from AGM axioms (Walliser and Zwirn, 2002). 

In the updating context, Bayes’ rule can very well apply to ontological 
probabilities. Since the universe has changed, the true ontological probabilities Ch 
may also have changed. The estimated probabilities Ch* can then be adapted 
accordingly. As a necessary condition, it must be assumed that “nothing else has 
occurred” in the system other than what is indicated by the message. In the example 
of the disease, Bayes’ rule can be used to calculate the new proportion of each 
variant, provided that the relative occurrence of variants B and C has not changed. 
Moreover, for epistemic probabilities, it is the Lewis rule (imaging) that results from 
the general axioms of belief change, but it coincides with Bayes’ rule for exhaustive 
messages. 

As for the pragmatic justifications of Bayes’ rule, they apply essentially to 
epistemic probabilities. In decision theory, the rule is justified by Savage’s 
(1954/1972) axioms when these latter are interpreted in a dynamic setting. A similar 
justification exists in terms of the Dutch Book, again extended to dynamic choices 
(Lewis, 1999). 

In what precedes, messages have always taken a set-theoretic form. But they 
can also take a probabilistic form. In other words, they can display a distribution of 
probabilities over a set of possible events. Thus, seen through an imperfect lens, a die 
lands on number one with some probability and on number two with the 
complementary probability. Bayes’ rule has been generalized to this case (Jeffrey, 
1992): the posterior probability of a world is simply a weighted sum (with the 
relative probabilities of the recorded events) of the conditional probabilities of the 
world obtained for each event. 

Lastly, the conditional probabilities allow us to consider probability-based 
rules of inference. This probabilistic reasoning can be compared to classical deductive 
reasoning (for the modeller) or to the reasoning described by epistemic logic (for an 
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agent). The proposition E is replaced by the proposition Pr(E) ≥ α or Pr(E) = α, 
and the aim is no longer to preserve the truth of E, but its probability (Suppes, 1966; 
Adams, 1975). It is easy to see that several of the fundamental inference rules of 
deductive logic have no direct probabilistic counterpart. For example, with the 
conditional operator ⊃, monotony allows us to infer E∧G ⊃ F13 from E ⊃ F. 
With conditional probabilities, however, it is perfectly possible that Pr(E/F) > 
Pr(E∧G/F). Similar remarks can be made for the modus ponens that allows us to 
infer F from E and E ⊃ F. If we conserve the conditional operator, we obtain the 
following result: if Pr(E⊃F) = α and Pr(E) = β, then α+β-1 ≤ Pr(F) ≤ α.14 
If one prefers to use the conditional probability, then the result is: if Pr(E/F) = α 
and Pr(E) = β, then αβ ≤ Pr(F) ≤ 115 (Wagner, 2004). 

Using this type of reasoning, we can build “Bayesian networks”, which take 
the form of graphs linking variables according to conditional probabilities. The 
probabilities then propagate through the network from node to node. These networks 
can take the form of “Bayesian hierarchies” when the agent has to deal with nested 
random effects. In all these cases, conditional probabilities appear as the primary 
concept and traditional probabilities are simply particular cases. If Pr(E/F) is a 
basic conditional probability, then Pr(E) = Pr(E/W). 

 

9. Ontological and methodological 
problems 

In their ontological interpretation, probabilities are properties of events. As a 
large part of the philosophical literature on probability confirms, these properties are 
difficult to identify. Three discussions seek to analyse them in more detail. 

The first discussion turns on whether non-extreme ontological probabilities 
exist in a deterministic context. It brings into opposition compatibilists (Levi, 2010; 
Maher, 2009; Hoefer, 2007) and incompatibilists (Lewis, 1980/1986; Loewer, 2001). 

                                                 
13 ∧ is the symbol of conjunction. 
14 In particular, if α = β = 1 - ε for ε ≤ ½, then Pr(F) ≥ 1 - 2ε. 
15 In particular, if α = β = 1 - ε for 0 ≤ ε < 1, then Pr(F) ≥ (1 - ε)2. 
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In the terms of §3, the former recognize irreducible and controlled probabilities as 
authentic ontological probabilities, while the latter only recognize irreducible 
probabilities. In fact, most philosophers accept the existence of non-extreme 
probabilities in the case of dice throwing; rejecting it would limit the use of 
probabilities to crude situations like radioactivity. The incompatibilists must also 
explain why we are so inclined to consider the probabilistic properties of dice as 
objective properties with which they are endowed. 

The second discussion concerns the existence or not of non-extreme 
probabilities of specific events, which can be expressed on the occasion of a particular 
experiment. It brings into opposition particularists and non-particularists, with 
frequentists being the most overt representatives of the second group. Among other 
things, the non-particularists must explain why and by what principles do our 
attributions of probabilities continually shift from generic events to specific events. 

The third discussion concerns the existence or not of non-extreme ontological 
probabilities for phenomena that have already occurred. It therefore concerns the 
evolution of probabilities over time – these probabilities being temporal for some 
authors (Lewis, 1980/1986) and non-temporal for others (Hoefer, 2007). For the 
former, contrary to ex ante probabilities, ex post probabilities are necessarily extreme 
(although possibly unknown). If the proposition p affirms that an event will occur at 
time t, then after t, the ontological probability of x is 1 if the event actually occurred 
and 0 otherwise. As Lewis says, “what’s past is no longer chancy”. As for epistemic 
probabilities, they vary naturally according to the information received. 

The problem also arises of the transition between ontological probabilities 
and epistemic probabilities. This transition is only possible when both types of 
probability have been carefully defined on the same object. This requirement applies 
more to ontological probabilities, since epistemic probabilities are always defined if 
we accept that every uncertainty can be the subject of a bet. When it is possible, the 
transition from ontological probabilities to epistemic probabilities follows what we 
might call an alignment principle. This principle affirms that the epistemic 
probabilities Cri of an agent can be aligned purely and simply on the ontological 
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probabilities Ch if the agent should happen to know them. In its simplest form 
proposed by Miller (1966), it can be expressed as follows: 

 
Miller’s principle: Cri(E / Ch(E) = α) = α  

 
A more sophisticated formulation is proposed by Lewis (1980/1986) in the 

following form (where the ontological probability is dated): 
 
Principal principle: Cri(E / [Cht(E) = α] ∧ d) = α 

 
In this expression, d is a proposition (or an event) which is both (i) 

compatible with the proposition that Crt(E) = α and (ii) admissible at time t. In 
other words, it only influences the beliefs of i about E by influencing her beliefs 
about the chances of E. Thus, a proposition stating that E has occurred is not 
admissible. On the other hand, a historical proposition, reporting on particular events 
that occurred before t, is admissible. The same holds true for a proposition 
concerning the dependency of ontological probabilities with respect to history, and 
more precisely a conditional whose antecedent involves events of this kind and whose 
consequent is a proposition on the ontological probability. For Lewis, the principal 
principle “seems to capture all we know about chance”. 

A variant of the alignment principle comes into play in the context of focusing. 
Let Eg be the result of a generic experiment and Es the result of a specific 
experiment. In the example of the disease, Eg concerns the illness of an individual of 
a certain type and Es the illness of a particular patient. According to the modified 
alignment principle, the ontological probability corresponding to the generic 
experiment is simply projected into an epistemic probability on the specific 
experiment: 

  
Focusing principle: Cri (Es / Ch(Eg) = α) = α 
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The focusing principle performs two operations. First, like the alignment 
principle, it makes it possible to move from an ontological probability to an epistemic 
probability. Then it makes it possible to move from a generic event to a specific event. 
In this respect, it helps to account for the fact that we can assign a probability to a 
specific event, as the particularists maintain. This principle, however, raises the 
problem of the formal distinction between generic and specific events. 

There is some disagreement over the status of the alignment principle. Lewis 
appears to stipulate that the principal principle is a principle of rationality, which 
applies to the degrees of belief of every rational agent, but does not justify them. Van 
Fraassen (1989) argues that it is impossible to find a justification for the alignment 
principle that does not suffer from circularity. By contrast, Howson and Urbach (1993) 
defend a version of the alignment principle adapted to the interpretation of 
probabilities that they support (von Mises’ hypothetical frequentism), and they put 
forward a pragmatic justification of this version. 

The opposite transition from epistemic probabilities to ontological 
probabilities is less conceptualized. It is generally considered in a dynamic setting, 
with an agent successively updating his epistemic probabilities. The question assumes 
a different meaning depending on whether one is a monist or pluralist subjectivist. 
For monists (de Finetti, 1937), ontological probabilities do not exist. It is then a 
matter of explaining why some probabilistic attributions appear to be objective, 
especially the vast inter-subjective agreement that exists between them: as a result of 
learning, it is a “psychological fact” (de Finetti) that inter-individual differences 
disappear. For pluralists, it is a matter of showing under what conditions epistemic 
probabilities converge towards ontological probabilities, which are assumed to exist 
independently of the former. These ideas are illustrated in different results of 
convergence,16 typically obtained when information is sufficiently rich and numerous 
and when the initial epistemic probabilities do not diverge excessively from either the 
real world or each other. 

                                                 
16 See Earman (1992), chap. 6 for a recent overview and an examination of the philosophical significance 
of these results, and Gillies (2000, pp. 69-83) for a presentation and critique of the founding result of de 
Finetti (1937). 
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10. Extensions of probabilities 
The variant that comes closest to Kolmogorov’s axioms concerns ordinal 

probabilities, which correspond to attributions of the kind: E is strictly more probable 
than E’. Ordinal probabilities (also called qualitative or comparative probabilities) 
are defined by a binary relation on an algebra A of a non-empty set W (Kreps, 
1988; Fishburn, 1994; Fine, 1973). The binary relation denoted >, which is 
asymmetric and negatively transitive, is an ordinal probability if the three following 
conditions are satisfied for all E, E’, E’’ ∈ A : 

 
(PO1) not (∅ > E) 
(PO2) W > ∅ 
(PO3) if (E ∪ E’) ∩ E’’ = ∅, then E > E’ if (E ∪ E’’) > 
(E’ ∪ E’’) 

 
A probability distribution P on A represents a relation > on the same 

algebra if and only if, for any pair of events E and E’, 
 

[P(E) > P(E’)] if [E > E’] 
 
If a binary relation can be represented by a probability distribution, then it 

satisfies (PO1)–(PO3). On the other hand, a relation that satisfies these 
conditions is not necessarily representable by a probability distribution. A number of 
properties are sufficient, however, to guarantee the representability (sometimes 
unique) of an ordinal probability. A very particular case of ordinal (or cardinal) 
probabilities involves “Boolean probabilities”, where the probabilities of events can 
only take the values 0 or 1. 

A priori, ordinal probabilities are open to the same interpretations as the 
standard quantitative probabilities. In fact, they have above all attracted the 
attention of supporters of an epistemic interpretation of probabilities. For those 
attached to introspective methods of revealing degrees of belief, comparative 
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judgements appear to be more realistic. In certain behavioural methods of revelation, 
like that of Savage (1954/1972), ordinal probabilities are the starting point for the 
measurement of quantitative probabilities, since the judgements revealed by the 
choices of an agent are of the type: “agent i judges E to be more probable than E’”. 

A different type of extension of probabilities concerns hierarchical 
probabilities, which study probabilistic judgements of an attributor on pre-defined 
probabilities (Walliser and Zwirn, 2011). To this end, we define successive strata k 
formed respectively of worlds, meta-worlds and so on (k-worlds). Within each level 
between two layers, the agent makes a judgement in each (k+1)-world on the lower 
k-worlds. This judgement can be of two kinds. A set-theoretical judgement associates 
a subset of k-worlds with each (k+1)-world. A probabilistic judgement associates a 
distribution of probabilities over the k-worlds with each (k+1)-world. On the basis 
of simple rules, it is possible to calculate an upper and a lower value for each event 
defined on the basic worlds. 

If we simply take two levels (three strata), three interesting structures have 
been studied in the literature. Two-level probabilities (Skyrms, Baron, Kyburg) result 
from probabilistic judgements at each level (probabilities on probabilities). Belief 
functions (Dempster, Shafer) are the result of set-theoretical judgements at the lower 
level and probabilistic judgements at the higher level. The families of probabilities 
are the result of probabilistic judgements at the lower level and set-theoretical 
judgements at the higher level. The last two structures prove to be interchangeable 
under certain conditions. They are expressed as restrictions on the “Choquet 
capacities”, that is to say measurements on the events that satisfy the axioms P1 and 
P2 and the monotonicity axiom. In particular, they make it possible to take into 
account situations of total ignorance, which the standard probabilities do not allow. 

The worlds of each level can themselves be interpreted in two different ways. 
Physical worlds correspond to entities endowed with material existence. From a 
physical world, one defines a distribution of ontological probabilities on the worlds of 
lower levels. Mental worlds correspond to mental states of an agent. From a 
psychological world, one defines a distribution of epistemic probabilities on the 
worlds of lower levels. A “subordination principle” entails that the higher levels are 
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necessarily psychological and the lower levels physical. This means that an agent can 
only have epistemic probabilities on ontological probabilities. Moreover, a “non-
schizophrenia principle” stipulates that an agent cannot form a (non-extreme) 
epistemic probability on his own epistemic beliefs of a lower level (he cannot hesitate 
between two beliefs). 

If we limit ourselves to one or two levels, only two structures are possible 
(setting aside the set-theoretic or probabilistic nature of the evaluations). An 
elementary belief simply carries a judgement on a phenomenon. So, for example, an 
agent can make a judgement about the colour of a ball. A compound belief carries a 
judgement on a meta-phenomenon composed of a collection of phenomena. Thus, an 
agent can make a judgement about the composition of an urn containing balls. A set-
theoretical judgement expresses the contents of the urn that the agent considers 
possible. A probabilistic judgement expresses the “ambiguity” (second-order 
uncertainty) of the agent about the contents, in other words the degree of confidence 
he has in each of the different possible contents. On the other hand, an agent cannot 
believe that he has different beliefs about the colour of a given ball. 

General principles similar to the alignment principle make it possible to 
transform physical worlds into psychological worlds (projection principle) and vice 
versa (anti-projection principle). Likewise, ontological probabilities are transformed 
into epistemic probabilities and vice versa. The agent takes as his own the ontological 
probabilities that he is supplied with or thinks up a device that gives reality to his 
epistemic probabilities. 

These transformations make it possible to define equivalences between the 
three standard contexts of belief change (revising, updating and focusing) through 
adaptation of the structures concerned. The change rules are easy to determine 
following simple principles for structures that are essentially ontological. They are 
then transposed to change structures of a more epistemic nature. We thus find the 
numerous change rules for hierarchical structures that had already been proposed on 
an intuitive basis (Walliser and Zwirn, 2011). Most of these rules make it possible to 
change probabilities even when the prior probability of the message is zero. 
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11. Application to statistical inference 
Statistical methods consist in comparing a random model with the data from 

two perspectives. First, statistical inference can be used to determine unknown 
parameters of the relations of the model in the light of the observations. Second, 
statistical tests allow one to judge the validity of the relations of the model in the light 
of the observations. In both cases, the parameter plays the role of a hypothesis that 
the statistician seeks to probabilize. 

In statistical inference, a random variable X is assumed to have a probability 
distribution f(Θ, X) that depends on a random parameter Θ. This distribution is 
given a priori as a constraint and cannot be modified by observations. We possess a 
sample of observations of the variable X, namely x = (x1, x2, … xi, …xI). We 
seek to estimate the value of the parameter so as to minimize the “distance” between 
the theoretical distribution and the observations. To do so, we start with a prior 
distribution of the parameter Θ, namely π(θ). We can then calculate the posterior 
probability distribution of Θ, namely π(θ/x). Furthermore, we can calculate the 
likelihood of the hypothesis Θ, namely Пi (f(Θ, xi). In each case, the statistician 
looks for a confidence interval at α % of the parameter [θ, θ], the interpretation of 
which may vary.17 

As an example, the statistician’s basic operation is linear regression. He starts 
with a cloud of points corresponding to pairs of observations (xi, yi). He looks for the 
parameters a and b of the straight line of the equation y = ax + b that comes 
closest to the points. The method of least squares measures this distance in terms of 
the sum of the squares of the deviations (measured vertically) between the straight 
line and the points. The straight line of the regression is supposed to represent the 
law governing the relation between the explanatory variable x and the explained 
variable y. The random errors with respect to the law, expressed by the deviations 
between the points and the straight line, have two interpretations. The ontological 
interpretation focuses on the deviations that arise with respect to the law. The 

                                                 
17 For a precise analysis of the relations between different approaches to inference, see Courgeau (2012). 
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epistemic interpretation focuses on the modeller’s incomplete understanding of the 
form of the law. 

The classical approach consists in searching for the parameter by the method 
of maximum likelihood (or the method of moments). Under classical hypotheses, this 
method coincides with the method of least squares. In fact, the probability f(Θ, X) is 
a priori objective and the statistician’s part of convention lies in choosing the 
maximum likelihood rule (or another rule) to calculate or situate the parameter. The 
confidence interval for the parameter means that there is a probability 1-α of 
obtaining the sample x that has been drawn, if the hypothesis is true: Pr (x / θ ∈ 
[θ, θ] ) ≥ 1- α. In other words, (1-α) % of the confidence intervals associated 
with the samples x contain the true value θ, which is hardly an intuitive 
interpretation. 

The Bayesian approach involves the calculation of a posterior probability of 
the parameter on the basis of a prior probability. In fact, if the probability f(Θ, X) 
is a priori objective, the probability π(θ) is subjective (attached to the statistician), as 
is the posterior probability π(θ/x). The confidence interval means that there is a 
probability α that the value of the parameter is in the interval: Pr (θ ∈ [θ, θ] / 
x) ≥ 1 - α. This time, the parameter is indeed in an interval with probability α. The 
key problem is the origin of the prior probability, which we can at the very least 
subject to sensibility calculations. 

The aim of statistical tests is to compare a reference hypothesis (called the null 
hypothesis) h0 with the hypothesis tested (called the alternative hypothesis) h. For 
any hypothesis h, two types of error are considered. A first type error consists in 
rejecting the hypothesis even though it is actually true. A second type error consists in 
accepting the hypothesis although it is false. These errors can be probabilized as a 
function of the observations made. One possible test then consists in accepting the 
hypothesis if errors of both types are below conventional thresholds. 

 

© Cournot Centre, September 2012



36 

 

12. Application to empirical sciences 
12.1 General considerations 

Many models in the empirical sciences are stochastic in nature. Two 
interpretations are directly associated with the random errors introduced into the 
modelling. The ontological interpretation supposes that the phenomenon really is of 
an indeterminist nature. The epistemic interpretation supposes that the modeller 
does not know the real structure of the model (omitted explanatory variables, 
erroneous analytic form of a relation) and introduces random errors to make up for 
his ignorance. A third interpretation focuses on the comparison of the model with the 
data. More precisely, the methodological interpretation introduces probabilities to 
take into account errors in measuring the data. 

So probabilities are objective in many circumstances, including the social 
sciences where the conditions are independent and difficult to repeat. In physics, 
quantum mechanics introduces (irreducible) probabilities, assumed to be intrinsic, 
concerning the instantaneous state of elementary particles. Likewise, statistical 
mechanics introduces probabilities linked to the (excessively complex) distribution of 
molecules in a gas. In biology, probability is involved in the random mutations that 
affect the genes of animal species or in gene transcription errors. In the social 
sciences, Durkheim used a populational approach to define the probability of 
individuals committing suicide as a function of their religion. 

The use of subjective probability is less frequent, except in forecasting to 
appraise the uncertainty of the proposed scenarios. In physics, weather forecasts are 
assigned probabilities that reflect our incomplete knowledge of meteorological laws. 
In economics, macroeconomic forecasts are subject to uncertainties of multiple origins 
and are also probabilized. Subjective probabilities are used to build “cones of 
uncertainty” from the present, reflecting the fact that uncertainty increases with the 
horizon of the forecast. 
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12.2 Game theory 
In the social sciences, one of the domains that makes the most intensive use of 

probability is game theory, the general framework for analysing strategic relations 
between agents. It identifies three main sources of uncertainty that affect not only the 
modeller, but also the agents represented in the model. These uncertainties have 
been systematically represented in probabilistic form, whatever their interpretation. It 
is only recently that non-probabilistic measurements have been introduced to express 
the third form of uncertainty (belief functions). 

The objective uncertainty of the modeller reflects an intrinsic indeterminism of 
the system. It operates in the behaviour of agents, due to free will or a “trembling 
hand” (slight discrepancy between the intention and execution of an action). It 
intervenes in collective phenomena resulting from numerous causal chains, as in the 
case of innovations or external macroeconomic shocks. 

The subjective uncertainty of the modeller derives from her profound 
ignorance of complex phenomena. It intervenes already at the level of the numerous 
factors introduced into production and cost functions, which combine technical and 
human factors. Subjective uncertainty also intervenes at the level of the functions of 
agents’ behaviour, which only take into account a limited number of explanatory 
factors. In particular, it plays a role in the mental states that influence behaviour 
(beliefs, preferences). 

The subjective uncertainty of agents concerns states of nature and the “types” 
of other agents (that is, the characteristics that determine their choices). It affects their 
factual information (past observations), their structural information (permanent 
structures) or their future information (predictions). It affects the passive context 
(states of nature), the characteristics of their opponents (actions, types) and even their 
own characteristics (actions, types). It is generally assumed that the agents adopt a 
prior probability of an objective nature (common to all agents) about the uncertain 
variables. This is known as a common prior assumption. They receive messages of a 
subjective nature about these variables; subjective in the sense that they differ from 
one individual to another (sets of information). Finally, they form a posterior 
probability of a subjective nature based on the previous elements. 
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As an example, we can examine the interpretation given to a mixed strategy 
implemented by an agent, namely a probability distribution over his pure strategies. 
The first interpretation considers this strategy as the expression of a deliberately 
random behaviour of the agent, which can be explained in several ways. The second 
interpretation relates to the average behaviour of a population whose members are 
pursuing different pure strategies. The third interpretation relates to the uncertain 
view that an agent has about the behaviour of his opponent. 

A similar analysis can be made of models of preferences including a stochastic 
element, developed in the theory and psychology of decision making and sometimes 
applied in game theory. The first interpretation relates to the alternative “states of 
mind” that the agent can have (possibly according to external circumstances). The 
second interpretation relates to the dispersion of preferences through a population. 
The third interpretation expresses the uncertainty to which the agent is subject as 
regards the “type” of other agents (encapsulating the determinants of their choices). 

 

13. Application to epistemology 
In philosophy, probability is mainly but not exclusively18 used in confirmation 

theory and inductive reasoning. Since the pioneering work of Hempel (1945), this 
theory has sought to clarify and codify the concepts of confirmation and 
disconfirmation as they are used in scientific and everyday reasoning. The question is 
usually formulated as follows: if H is a hypothesis and E is a proposition that 
summarizes empirical observations, under what conditions can we consider that E 
confirms (resp. disconfirms) H ?19 

Confirmation theories were first developed in a logical context, without 
involving probability. Today, the main works adopt a probabilist framework and are 

                                                 
18 It also plays an important role in the theories of causality and knowledge. 
19 For a general presentation, see Zwirn and Zwirn (1996). 
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based on an epistemic interpretation of probability. This dominant trend is known as 
Bayesian confirmation theory (BCT).20 

BCT uses an incremental (and not absolute) concept of confirmation: H is 
confirmed by E, not if E makes H very probable, but if E increases the probability 
of H: 

 
E confirms H if P(H / E) > P(H) 

 
This qualitative concept of confirmation is often associated with a 

corresponding quantitative concept that varies according to the measures chosen. The 
popularity of BCT stems from its capacity to account for a large number of intuitions 
about confirmation. It provides elements of response – more or less convincing – to 
classic problems of confirmation, such as the Raven paradox or the Duhem–Quine 
problem. It also leads to the following results: 

(1) all else being equal, the more probable a proposition E is, given a 
hypothesis H, the more H will be confirmed by E; 

(2) all else being equal, the less probable the proposition E is a priori, the 
more H will be confirmed by E ( the “surprise principle”); 

(3) E confirms H if and only if P(E⏐H) > P(E⏐¬ H). 
 
One of the major sources of difficulty for BCT derives from its subjectivity. 

From the standpoint of this theory, there is nothing to prevent the proposition E from 
confirming H for one individual i but not for another individual j. According to some 
scholars, this excessive liberalism prevents BCT from accounting for the objectivity at 
work in scientific reasoning. One possible response consists in restricting the 
applications of BCT to certain favourable cases where individual probabilities are 
similar or even identical. This is non-trivial since it has to hold for the conditional 
probability P(E/H), but also for the plain probability P(E). It is the case if the 
subjective probabilities result from objective probabilities through the alignment 

                                                 
20 For detailed discussions, see Earman (1992) and Howson and Urbach (1993). For a more succinct 
presentation, see Cozic (2011). 
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principle (or focusing principle) or if the subjective probabilities converge when the 
information is sufficiently rich (see §8). It is possible, however, to question BCT and 
characterize the concept of confirmation only according to likelihood 
(“likelihoodism”). 

 

14. Conclusion 
Two polar-opposite ways of measuring probabilities are operationally 

distinguished in this essay. Frequential probabilities are inherent to phenomena and 
obtained simply by measuring the frequency of their occurrence in repeated 
experiments. Revealed probabilities are agents’ degrees of belief about phenomena 
and are obtained by revelation from their actions. The other types of probabilities are 
situated between these two extremes and are based on less rigorous methodologies. 
The more objective ones no longer result from repeated experiments, but from simple 
sequential or populational data. As for the more subjective ones, they are no longer 
associated with well-identified agents, but are very free estimations of probabilities 
that enable calculations. 

The epistemic and subjective approaches to probability are often described as 
“Bayesian”. In fact, this term is open to several different meanings that can be 
distinguished by the use of probability in the behaviour of any agent. At the first 
level, an agent is Bayesian if he expresses the uncertainty about his environment in 
the form of epistemic probabilities. At the second level, an agent is Bayesian if he 
performs his reasoning in keeping with the calculation of probabilities, in particular 
by using Bayes’ rule in a dynamic context. At the third level, an agent is Bayesian if 
he makes his decisions according to the criterion of expected utility maximization. At 
the three levels, Bayesian approaches apply to any decision maker who perceives and 
acts on his environment. They also apply to the modeller, especially statisticians and 
epistemologists who are Bayesians at the second and third levels. 

Numerous bridges have been laid down between the ontological/objective 
and epistemic/subjective approaches. Above all, these bridges have led to the 
objective approach being treated as a particular or asymptotic case of the subjective 
approach. This is true in the calculation of probabilities, where the objective approach 
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appears as a specific form of the subjective approach with complete information. It is 
also true in statistics, where classical statistics appears as a particular case of Bayesian 
statistics. 
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